

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА ФГБОУ ВО «ГУМРФ имени адмирала С.О. Макарова»

Котласский филиал

Федерального государственного бюджетного образовательного учреждения высшего образования

«Государственный университет морского и речного флота имени адмирала С.О. Макарова» Котласский филиал ФГБОУ ВО «ГУМРФ имени адмирала С.О. Макарова»

Кафедра естественнонаучных и технических дисциплин

УТВЕРЖДАЮ

Директор

О.В. Шергина

«16» июня 2022 г.

РАБОЧАЯ ПРОГРАММА

дисциплины Теория автоматического управления

Направление подготовки: <u>13.03.02 Электроэнергетика и электротехника</u>

Профиль: Электропривод и автоматика

Уровень высшего образования: бакалавриат

Форма обучения: заочная

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы 13.03.02 Электроэнергетика и электротехника

В результате освоения ОПОП бакалавриата обучающийся должен овладеть следующими результатами обучения по дисциплине:

Код компетенции	Результаты освоения ОПОП (содержание компетенций)	Планируемые результаты освоения дисциплины
ОПК-2	способностью применять	Знать: основы современной теории
	соответствующий физико-	управления, моделирования систем,
	математический аппарат,	численные алгоритмы оценки параметров
	методы анализа и	моделей по эксперименту, способы
	моделирования,	практической оптимизации с
	теоретического и	использованием инструментария
	экспериментального	вычислительных сред, способы и операторы
	исследования при решении	(функции) для решения задач управления
	профессиональных задач.	динамическими системами
		Уметь: использовать полученную в
		результате обучения теоретическую и
		практическую базу для получения
		математического описания объектов и
		систем в виде дифференциальных
		уравнений, структурных схем; построения
		их характеристик и моделирования
		Владеть: способами моделирования
		технологических процессов в судостроении
		и судоремонте; иметь представление об
		информационных технологиях и их
		использовании для экономии энергии и
		ресурсосбережения на предприятиях
		водного транспорта.

2. Место дисциплины в структуре образовательной программы

Дисциплина "Теория автоматического управления" относится к базовой части Блока 1 и изучается на 4 курсе по заочной форме.

Для изучения дисциплины студент должен:

- знать математику, физику, теоретическую механику, теорию механизмов и машин, теоретические основы электротехники, общую электротехнику и электронику;
- уметь использовать основные методы управления в процессе принятия решений при проектировании систем и выборе технологии; сборе и обработке информации при решении задач, включенных в квалификационную характеристику специальности.

Для успешного освоения дисциплины «Теория автоматического управления» студент должен изучить курсы «Математика», «Физика»,

«Теоретическая механика», «Теоретические основы электротехники», «Общая электротехника и электроника».

Дисциплина "Теория автоматического управления" необходима в качестве предшествующей для дисциплин «Электрооборудование береговых объектов водного транспорта», «Системы управления электроприводов», «Электрический привод», «Электропривод в современных технологиях».

3. Объем дисциплины в зачетных единицах и виды учебных занятий

Общая трудоемкость дисциплины составляет 6 з.е., 216 часа

		Форма обучения				
		Очная		Заочная		
Вид учебной работы	Всего часов	из ни семест		Всего часов	из них семестр	
Общая трудоемкость дисциплины				216	216	
Контактная работа обучающихся с				28	28	
преподавателем, всего						
В том числе:						
Лекции				12	12	
Практические занятия						
Лабораторные работы				16	16	
Самостоятельная работа, всего				188	188	
В том числе:						
Курсовая работа				18	18	
Другие виды самостоятельной работы				134	134	
Промежуточная аттестация: зачёт,				36	36	
экзамен						

4. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

4.1. Содержание разделов (тем) дисциплины

			Трудс	емкост
$N_{\underline{o}}$	Наименование раздела	Содержание раздела (темы)	ь в ча	асах по
п/п	(темы) дисциплины	дисциплины	фор	омам
			обуч	нения
			очная	заочная
1.	Введение.	Общие сведения об управлении и		2
1.1.	Основные понятия и	автоматике. Структура системы		2
	определения	управления. Входные и выходные		
		параметры объекта. Общее		
		уравнения динамики объекта.		

1.2	Принципы управления в автоматических системах	Принцип разомкнутого управления. Принцип компенсации. Принцип обратной связи.	
1.3	Классификация систем автоматического управления	Основные признаки классификации систем	
		управления. Статические характеристики основных классов САУ.	
2.	Линейные непрерывные дели и характеристики автоматического		4
2.1	Математические модели ния динамики объектов ления	Математические модели. Основные понятия и определения. Примеры из электротехники. Построение математической модели электрической цепи с <i>R</i> , <i>L</i> , <i>C</i> . Уравнение динамики электродвигателя постоянного тока.	
2.2	Линеаризация уравнений динамики	Основные методы линеаризации уравнений динамики. Сущность геометрической линеаризации уравнений динамики. Уравнение динамики в приращениях. Уравнение динамики двигателя в относительных переменных.	
2.3	Дифференциальные уравнения и передаточные функции динамических систем	Операторная форма записи дифференциальных уравнений и передаточных функций. Преобразование Лапласа линейных дифференциальных уравнений. Получение передаточных функций. Свойства передаточных функций. Передаточные функции замкнутых и разомкнутых систем.	2
2.4	Временные характеристики динамических систем и элементарных звеньев	Типовые воздействия (единичное ступенчатое, единичное импульсное). Переходная и весовая (импульсная переходная) функции. Связи переходной и весовой функций между собой и с передаточной функцией системы. Дифференциальные уравнения типовых звеньев и их временные характеристики.	1

2.5	Частотные характеристики динамических систем и элементарных звеньев	Понятие и основные виды частотных характеристик. Амплитуднофазовая частотная характеристика (годограф). Амплитудная и фазовая частотные характеристики и их логарифмические аналоги. Частотные характеристики элементарных динамических звеньев.	1
2.6	Матричные модели	Уравнения динамики в	
	динамических систем в пространстве состояний	пространстве состояний. Структурная схема модели динамической системы в пространстве состояний. Нормальная и каноническая форма уравнений состояния.	
3.	Анализ линейных	<u></u>	2
	ных систем		
3.1	управления Понятие об устойчивости систем управления. Необходимое и достаточное условие устойчивости систем.	Общие понятия об устойчивости. Устойчивость модели по Ляпунову. Связь между корнями. характеристического уравнения и устойчивостью. Теорема Ляпунова об устойчивости линеаризованных систем.	
3.2	Алгебраический критерий устойчивости динамической системы	Правило составления главного определителя Гурвица и определителей Гурвица низших порядков. Критерий устойчивости Гурвица. Частные случаи применения критерия Гурвица к системам 1-го, 2- го и 3-го порядка.	
3.3	Частотные критерии устойчивости динамической системы	Критерий устойчивости Михайлова. Критерий устойчивости Найквиста. Определение устойчивости по логарифмическим частотным характеристикам. Запасы устойчивости.	2
3.4	Оценка точности регулирования в установившихся режимах	Понятия установившегося режима СУ и установившейся ошибки. Передаточная функция СУ относительно ошибки. Общая формула вычисления установившейся ошибки. Коэффициенты ошибок.	

	Прямая и косвенная оценки качества переходных процессов Оценка чувствительности систем. Инвариантность систем	Временные оценки качества переходного процесса. Частотные оценки качества переходного процесса. Корневые оценки качества. Понятие о робастных системах. Параметрическая неопределенность. Непараметрическая неопределенность.	
3.7	Анализ линейных стохастических систем при стационарных воздействиях.	Понятие о стационарных и нестационарных случайных процессах в СУ. Типовые законы распределения случайных величин. Характеристики случайных сигналов: ма- тематическое ожидание, дисперсия, корреляционная функция, спектральная плотность. Прохождение случайных сигналов через линейные звенья. Линейные стохастические модели СУ. Определение вероятностных характеристик ошибки системы при стационарных случайных воздействиях.	
3.8	Основы анализа систем в пространстве состояний	Фундаментальная матрица. Матричное характеристическое уравнение и условие устойчивости. Понятие управляемости системы. Математическое условие управляемости. Понятие наблюдаемости системы. Математическое условие	
4.1	Задачи и методы синтеза линейных непрерывных систем автоматического управления Коррекция динамических свойств системы управления с помощью ПИД-регуляторов.	Постановка задачи синтеза корректирующих устройств. Влияние жесткой и гибкой обратной связи на процесс регулирования. Типы корректирующих устройств регуляторов. Свойства статической замкнутой системы с Прегулятором. Свойства замкнутой системы с ПИ- и ПИДрегуляторами.	2

4.2	Синтез последовательного корректирующего устройства с помощью ЛАФЧХ	Постановка задачи синтеза. Построение желаемой ЛАЧХ разомкнутой системы. Определение ЛАЧХ корректирующего устройства. Переход от ЛАЧХ корректирующего устройства к его передаточной функции.	
5.	Дискретные системы		2
5.1	тического управления Общая характеристика	Общая характеристика и классифи-	2
	кретных систем	кация дискретных систем. Виды квантования сигналов. Теорема В.А. Котельникова. Способы импульсной модуляции. Примеры импульсных систем с АИМ и ШИМ. Понятие о релейных системах. Обобщенная функциональная схема цифровой системы. Преимущества цифровых систем по сравнению с аналоговыми системами.	
5.2	Математическое описание дискретных систем	Решетчатые функции и разностные уравнения. Дискретное преобразование Лапласа. Z-преобразование и его свойства.	
5.3	Моделирование дискретных и цифровых систем.	Идеальный импульсный элемент и его математическая модель. Математические модели элементов импульсных САУ. Особенности математических моделей цифровых систем. Передаточные функции дискретной и цифровой САУ.	
5.4	Переходные процессы в импульсных системах	Уравнения динамики импульсных систем. Определение реакции разомкнутой и замкнутой импульсных систем на единичное воздействие.	
5.5	Анализ устойчивости дискретных систем	Условия устойчивости. Отображение области устойчивости на комплексной плоскости. Пример оценки устойчивости импульсной системы. Частотные критерии Михайлова и Найквиста	
6. 6.1	Нелинейные системы матического управления Общие сведения о системах	Основные понятия и особенности нелинейных систем. Статические и динамические нелинейности. Ме-	

6.2	Анализ устойчивости нелинейных систем на основе метода фазового пространства	тоды линеаризации нелинейных моделей. Структурные преобразования нелинейных систем. Классификация и примеры нелинейных систем. Метод фазового пространства. Типовые фазовые портреты нелинейных систем и их особые точки. Анализ поведения СУ на фазовой плоскости. Свойства фазовых траекторий.	
6.3	Анализ нелинейных систем на основе методов А.М. Ляпунова и В.М. Попова	Первый и второй методы Ляпунова анализа устойчивости нелинейных систем. Частотный анализ устойчивости методом Попова. Понятие абсолютной устойчивости. Графическое представление критерия абсолютной устойчивости.	
6.4	Метод гармонической линеаризации нелинейной системы	Сущность метода. Структурная схема гармонически линеаризованной системы. Применение метода для оценки устойчивости и наличия автоколебаний в системе. Определение амплитуды и частоты автоколебаний аналитическим и графоаналитическим методами.	
	Всего		12

4.2. Лабораторные работы

No॒	Номер раздела (темы)	Наименование и содержание	Трудо	емкость
Π/Π	дисциплины	практических занятий	Вч	насах по
			фо	рмам
			об	учения
			очная	заочная
1.	Раздел 2.3; 2.4.	Оправания нараделации		4
1.		Определение передаточных		4
	Дифференциальные уравнения	функций типовых звеньев		
	и передаточные функции	автоматики по их переходным		
	динамических систем.	характеристикам		
	Временные характеристики			
	динамических систем и			
	элементарных звеньев			
2.	Раздел 2.5. Частотные	Исследование апериодических		6
	характеристики динамических	звеньев		
	систем и элементарных звеньев			

3.	Раздел 2.5. Частотные	Исследование	колебательных	6
	характеристики динамических	звеньев		
	систем и элементарных звеньев			
	Всего			16

4.3. Практические занятия: не предусмотрены учебным планом

5. Перечень учебно-методического обеспечения самостоятельной работы обучающихся по дисциплине

5.1. Самостоятельная работа

№ п/п	Вид самостоятельной работы	Наименование работы и содержание
1	Подготовка к лабораторным занятиям	Изучение материалов лекций по теме лабораторных занятий
2	Курсовая работа	Исследование и коррекция линейной системы автоматического управления (САУ)
3	Подготовка к экзамену	Изучениематериаловучебников, учебно- методических пособий и конспектов лекций

5.2. Учебно-методическое обеспечение самостоятельной работы

№ π/π	Наименование работы, ее вид	Выходные данные	Автор(ы)
1	Курсовая работа «Исследование и коррекция характеристик линейной системы автоматического управления (САУ)»	Учебно-методическое электронное пособие по выполнению курсовой работы. СПб.: ГУМРФ им. С.О. Макарова. 201532 с.	А. А. Чертков
2	Пример расчета линейной системы автоматического управления	Методическое электронное пособие «Пример выполнения курсовой работы». СПб.: ГУМРФ им. С.О. Макарова201511 с.	А.А. Чертков
3.	Теория автоматического управления: Методические указания к лабораторным работам для студентов технических специальности очной формы обучения	Котласский филиал ФГОУ ВПО «СПГУВК», 2010, 11 с.	Лаптев Н.А.

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Приведен в обязательном приложении к рабочей программе

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

		Вид	Мосто изполня изпотон стро
Название	Автор(ы)		Место издания, издательство,
		издания	год издания, кол-во страниц
		(учебник,	
		учебное	
		пособие)	
		литература	T
1. Теория автоматического	Анхимюк	Учебное	Дизайн П, 2002.
управления	В.Л.	пособие	
2. Исследование систем	Оськин,	Учебное	Владивосток: МГУ им. адм.
автоматического	Д.А.	пособие	Г.И. Невельского, 2012. —
управления: [Электронный			160 с. — Режим доступа:
pecypc]			https://e.lanbook.com/book/201
			49
3. Теория автоматического	Гайдук	Учебное	Санкт-Петербург: Лань, 2016.
управления в примерах и	A.P.,	пособие	— 464 c. — Режим доступа:
задачах с решениями в	Беляев		https://e.lanbook.com/book/717
МАТLAВ [Электронный	B.E.,		44
pecypc]	Пьявченко		
peeype	T.A.		
Ţ		ная литерату	 /na
1. Теория автоматического	Кудинов	Учебное	Санкт-Петербург: Лань, 2016.
управления (с	Ю.И.,	пособие	— 256 с. — Режим доступа:
использованием MATLAB	Пащенко	пособис	https://e.lanbook.com/book/725
— SIMULINK)	Ф.Ф.		84
— Shvio Link) [Электронный ресурс]	Ψ.Ψ.		<u>84</u>
	Б.И.	Учебное	Томск: Томский
2. Теория автоматического			
управления [Электронный	Коновалов	методическ	государственный университет
pecypc]	, Ю.М.	ое пособие	систем управления и
	Лебедев.		радиоэлектроники, 2010. —
			162 с. — 2227-8397. — Режим
			доступа:
			http://www.iprbookshop.ru/138
			<u>69.html</u>
3. Теория систем управления	Певзнер,	Учебное	Санкт-Петербург: Лань, 2013.
[Электронный ресурс]	Л.Д.	пособие	— 424 c. — Режим доступа:
			https://e.lanbook.com/book/684
			<u>69</u>
4. Теория автоматического	Федосенк	Учебное	Кемерово: Кемеровский
управления [Электронный	ов Б.А.	пособие	технологический институт
pecypc]			пищевой промышленности,
			2014. — 153 c. — 978-5-
			89289-863-8. — Режим
			доступа:
			http://www.iprbookshop.ru/612
			92.html
	1	l	1

8. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

$N_{\underline{o}}$	Наименование информационного	Ссылка на информационный ресурс

Π/Π	pecypca	
1	Электротехнический портал для студентов ВУЗов и инженеров	http://xn 8sbnaarbiedfksmiphlmncm1d9b0i.xn p1ai/
2	Образовательный портал «ГУМРФ имени адмирала С.О. Макарова»	http://edu.gumrf.ru
3.	Электронная научная библиотека, IPRbooks	https://www.iprbookshop.ru/
4.	Электронная библиотека Лань	https://e.lanbook.com

9. Описание материально-технической базы и перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

	Наименование	Оснащенность	
	специальных	специальных	Перечень лицензионного
No	помещений и	помещений и	программного обеспечения.
Π/Π	помещений для	помещений для	Реквизиты подтверждающего
	самостоятельной	самостоятельной	документа
	работы	работы	, ,
1	Архангельская обл., г.	Доступ в Интернет.	Windows 7 Enterprise (MSDN AA
	Котлас, ул.	Комплект учебной	Developer Electronic Fulfillment
	Спортивная, д. 18	мебели (столы,	(Договор №09/2011 от
	Кабинет № 302-а	стулья, доска);	13.12.2011)); MS Office 2007:
	«Информатика.	Компьютеры (9 шт):	Word, Excel, PowerPoint (Лицензия
	Информационные	процессор PhenomII	(гос. Контракт № 48-158/2007 от
	технологии.	X2 555 AM3	11.10.2007)); Yandex Браузер
	Статистика.	(3.2/2000/7Mb),	(распространяется свободно,
	Документационное	оперативная память	лицензия BSD License,
	обеспечение	4 Гб, жесткий диск	правообладатель ООО
	управления. Правовое	160 Гб, монитор	«ЯНДЕКС»); Adobe Acrobat
	обеспечение	Philips 192E2SB2.	Reader (распространяется
	профессиональной	Компьютер (1 шт):	свободно, лицензия ADOBE
	деятельности. Теория	процессор PhenomII	PCSLA, правообладатель Adobe
	бухгалтерского учета»	X2 555 AM3	Systems Inc.); PTC Mathcad
		(3.2/2000/7Mb),	Express (Бесплатная ограниченная,
		оперативная память	правообладатель РТС (NASDAQ:
		4 Гб, жесткий диск	PTC)); MathWorks MATLAB
		160 Гб, монитор	((Договор 48-158/07 от
		Philips 192E2SB2,	11.11.2007; 48/128/2009 от
		дисковод DVD-RW.	22.09.2009; 48/128/2009 от
		переносной	22.09.2009; 319-243/15 от
		проектор Viewsonic	07.11.2015));
		PJD5232,	
		переносной ноутбук	
		Dell Latitude 110L;	
		переносной экран,	
		Коммутатор Асогр	
		HU16D, учебно-	
		наглядные пособия	
2	Архангельская обл.,	Доступ в Интернет.	Microsoft Windows XP Professional

г.Котлас, ул.Заполярная, д.19 кабинет №207 Лаборатория «Физика». Кабинет «Общеобразовательные дисциплины» Комплект учебной мебели (столы, стулья, доска); компьютер в сборе (системный блок (Intel Celeron 3 GHz, 1 Gb), монитор Philips 193 ЖК, клавиатура, мышь) - 1 шт., принтер лазерный НР 1102 - 1 шт., телевизор Samsung 20" ЭЛТ - 1 шт, учебнонаглядные пособия

(контракт №323/08 от 22.12.2008 г. ИП Кабаков Е.Л.); Kaspersky Endpoint Security (контракт №311/2015 от 14.12.2015); Libre Office (текстовый редактор Writer, редактор таблиц Calc, редактор презентаций Impress и прочее) (распространяется свободно, лицензия GNU LGPL v3+, The Document Foundation); PDF-XChange Viewer (распространяется бесплатно, Freeware, лицензия EULA V1-7.х., Tracker Software Products Ltd); AIMP (распространяется бесплатно, Freeware для домашнего и коммерческого использования, Artem Izmaylov); XnView (распространяется бесплатно, Freeware для частного некоммерческого или образовательного использования, XnSoft); Media Player Classic -Ноте Сіпета (распространяется свободно, лицензия GNU GPL, MPC-HC Team); Mozilla Firefox (распространяется свободно, лицензия Mozilla Public License и GNU GPL, Mozilla Corporation); 7zip (распространяется свободно, лицензия GNU LGPL, правообладатель Igor Pavlov)); Adobe Flash Player (распространяется свободно, лицензия ADOBE PCSLA, правообладатель Adobe Systems Inc.).

10. Методические указания для обучающихся по освоению дисциплины

10.1. Рекомендации по освоению лекционного материала, подготовке к лекциям

Лекции являются одним из основных видов учебных занятий в высшем учебном заведении. В ходе лекционного курса проводится изложение современных научных материалов в систематизированном виде, а также разъяснение наиболее трудных вопросов учебной дисциплины.

При изучении дисциплины следует помнить, что лекционные занятия являются направляющими в большом объеме научного материала. Большую часть знаний студент должен набирать самостоятельно из учебников и

научной литературы.

В тетради для конспектирования лекций должны быть поля, где по ходу конспектирования делаются необходимые пометки. В конспектах рекомендуется применять сокращения слов, что ускоряет запись. Вопросы, возникшие в ходе лекций, рекомендуется делать на полях и после окончания лекции обратиться за разъяснениями к преподавателю.

Необходимо активно работать с конспектом лекции: после окончания лекции рекомендуется перечитать свои записи, внести поправки и дополнения на полях. Конспекты лекций рекомендуется использовать при подготовке к практическим занятиям, экзамену, контрольным тестам, коллоквиумам, при выполнении самостоятельных заданий.

10.2. Рекомендации по подготовке к практическим занятиям

практическим лабораторным подготовки И занятиям обучающемуся необходимо заранее ознакомиться с перечнем вопросов, которые будут рассмотрены на занятии, а также со списком основной и дополнительной литературы. Необходимо помнить, что правильная полная подготовка к занятию подразумевает прочтение не только лекционного материала, НО учебной литературы. Необходимо соответствующие разделы из основной и дополнительной литературы, рекомендованной преподавателем, выделить основные понятия и процессы, их закономерности и движущие силы и взаимные связи. При подготовке к занятию не нужно заучивать учебный материал. Необходимо попытаться самостоятельно найти новые данные по теме занятия в научных и научноавторитетных популярных периодических изданиях и на сайтах. практических занятиях нужно выяснять преподавателя ответы на интересующие затруднительные вопросы, или высказывать И аргументировать свое мнение.

10.3. Рекомендации по организации самостоятельной работы

Самостоятельная работа включает изучение литературы, поиск информации в сети Интернет, подготовку к практическим работам, экзамену.

При подготовке к практическим занятиям необходимо ознакомиться с литературой, рекомендованной преподавателем, и конспектом лекций. Необходимо разобраться в основных понятиях. Записать возникшие вопросы и найти ответы на них на занятиях, либо разобрать их с преподавателем.

Подготовку к зачету или экзамену необходимо начинать заранее. Следует проанализировать научный и методический материал учебников, учебно-методических пособий, конспекты лекций. Знать формулировки терминов и уметь их четко воспроизводить. Ответы на вопросы из примерного перечня вопросов для подготовки к экзамену лучше обдумать заранее. Ответы построить в четкой и лаконичной форме.

Составитель: ст. преподаватель Куликов И.В.

Зав. кафедрой: к.с/х н., к.т.н., доцент Шергина О.В.

Рабочая программа рассмотрена на заседании кафедры естественнонаучных и технических дисциплин и утверждена на 2022/2023 учебный год Протокол № 09 от «16» июня 2022 г

Зав. кафедрой: ______/Шергина О.В./

ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА ФГБОУ ВО «ГУМРФ имени адмирала С.О. Макарова»

Котласский филиал

Федерального государственного бюджетного образовательного учреждения высшего образования

«Государственный университет морского и речного флота имени адмирала С.О. Макарова» Котласский филиал ФГБОУ ВО «ГУМРФ имени адмирала С.О. Макарова»

Кафедра естественнонаучных и технических дисциплин

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине <u>Теория автоматического управления</u> (Приложение к рабочей программе дисциплины)

Направление подготовки: <u>13.03.02 Электроэнергетика и электротехника</u>

Профиль: Электропривод и автоматика

Уровень высшего образования: бакалавриат

Котлас

2022

1. Перечень компетенций и этапы их формирования в процессе освоения дисциплины

Рабочей программой дисциплины предусмотрено формирование следующих компетенций:

Следующи	х компетенции.			
Код компетенции	Результаты освоения ОПОП (содержание компетенций)	Планируемые результаты освоения дисциплины		
ОПК-2	способностью применять соответствующий физикоматематический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач.	Знать: основы современной теории управления, моделирования систем, численные алгоритмы оценки параметров моделей по эксперименту, способы практической оптимизации с использованием инструментария вычислительных сред, способы и операторы (функции) для решения задач управления динамическими системами Уметь: использовать полученную в результате обучения теоретическую и практическую базу для получения математического описания объектов и систем в виде дифференциальных уравнений, структурных схем; построения их характеристик и моделирования Владеть: способами моделирования технологических процессов в судостроении и судоремонте; иметь представление об информационных технологиях и их использовании для экономии энергии и ресурсосбережения на предприятиях водного транспорта.		

2. Паспорт фонда оценочных средств для проведения текущей и промежуточной аттестации обучающихся

Код No Контролируемые разделы (темы) контролируемой Наименование Π/Π дисциплины компетенции оценочного средства (или ее части) 1. Введение. Устный опрос, зачет Основные понятия и определения. ОПК-2 1.1 ОПК-2 Устный опрос, зачет Принципы управления в автоматических 1.2 системах. Классификация систем автоматического ОПК-2 Устный опрос, зачет 1.3. управления. 2. Линейные непрерывные модели и характеристики систем автоматического управления. 2.1. Математические модели описания Устный опрос, зачет

	динамики объектов управления.		
2.2.	Линеаризация уравнений динамики	ОПК-2	Устный опрос, зачет
2.3	Дифференциальные уравнения и передаточные функции динамических систем.	ОПК-2	Устный опрос, защита лабораторных работ зачет
2.4	Временные характеристики динамических систем и элементарных звеньев	ОПК-2	Устный опрос, защита лабораторных работ, зачет
2.5	Частотные характеристики динамических систем и элементарных звеньев	ОПК-2	Устный опрос, защита лабораторных работ, зачет
2.6	Описание динамических систем в пространстве состояний Матричные модели динамических систем в пространстве состояний	ОПК-2	Устный опрос, зачет
3.	Анализ линейных непрерывных систем		
3.1.	автоматического управления Устойчивость линейных систем. Основные понятия и определения.		Устный опрос, курсовая работа, зачет
3.2.	Алгебраический критерий устойчивости динамической системы.	ОПК-2	Устный опрос, курсовая работа, зачет
3.3.	Частотные критерии устойчивости динамической системы.	ОПК-2	Устный опрос, курсовая работа, зачет
3.4.	Оценка точности регулирования в установившихся режимах.	ОПК-2	Устный опрос, курсовая работа, зачет
3.5.	Прямая и косвенная оценки качества переходных процессов.	ОПК-2	Устный опрос, курсовая работа, зачет
3.6.	Оценка чувствительности систем. Инвариантность систем.	ОПК-2	Устный опрос, курсовая работа, зачет
3.7.	Анализ линейных стохастических систем при стационарных случайных воздействиях.	ОПК-2	Устный опрос, курсовая работа, зачет
3.8.	Основы анализа систем в пространстве состояний	ОПК-2	Устный опрос, курсовая работа, зачет
4.	Задачи и методы синтеза линейных непрерывных систем автоматического управления		
4.1.	Коррекция динамических свойств системы управления с помощью ПИД-регуляторов.	ОПК-2	Устный опрос, зачет
4.2.	Синтез последовательного корректирующего устройства с помощью ЛАФЧХ.	ОПК-2	Устный опрос, зачет

5.	Дискретные системы автоматического управления		
5.1.	Общая характеристика дискретных систем.	ОПК-2	Устный опрос, экзамен
5.2.	Математическое описание дискретных систем.	ОПК-2	Устный опрос, экзамен
5.3.	Моделирование дискретных и цифровых систем.	ОПК-2	Устный опрос, экзамен
5.4.	Переходные процессы в импульсных системах.	ОПК-2	Устный опрос, экзамен
5.5.	Анализ устойчивости дискретных систем.	ОПК-2	Устный опрос, экзамен
6.	Нелинейные системы автоматического управления.		
6.1.	Общие сведения о нелинейных системах.	ОПК-2	Устный опрос, экзамен
6.2.	Анализ устойчивости нелинейных систем на основе метода фазового пространства.	ОПК-2	Устный опрос, экзамен
6.3	Анализ нелинейных систем на основе методов А.М. Ляпунова и В.М. Попова.	ОПК-2	Устный опрос, экзамен
6.4.	Метод гармонической линеаризации нелинейной системы.	ОПК-2	Устный опрос, экзамен

3. Критерии оценивания результата обучения по дисциплине и шкала Оценивания

	Критерии оце	енивания результ	гата обучения по	дисциплине и	Процед
Рорунц тот	шкала оценивания по дисциплине			ypa	
Результат					оценива
обучения по					ния
дисциплине	2	3	4	5	
	не зачтено		зачтено		
Знать:	Отсутствие	Неполные	Сформирован	Сформированн	
основы	знаний или	представлени	ные, но	ые	Устный
современной	фрагментарн	я об основах	содержащие	систематическ	опрос
теории	ые	современной	отдельные	ие	ПО
управления,	представлени	теории	пробелы	представления	темам
моделирован	я об основах	управления,	представления	об основах	№1, №2,
ия систем,	современной	моделирован	об основах	современной	№3, №4,
численные	теории	ия систем,	современной	теории	№ 5,
алгоритмы	управления,	численные	теории	управления,	№ 6;
оценки	моделирован	алгоритмы	управления,	моделировани	защита
параметров	ия систем,	оценки	моделировани	я систем,	лаборат
моделей по	численные	параметров	я систем,	численные	орных
эксперимент	алгоритмы	моделей по	численные	алгоритмы	работ по
у, способы	оценки	эксперимент,	алгоритмы	оценки	темам
практическо	параметров	способы	оценки	параметров	№2.3-
й	моделей по	практической	параметров	моделей по	2.5;
оптимизации	эксперименту	оптимизации	моделей по	эксперименту,	
c	, способы	c	эксперименту,	способы	Зачет по

напол порон	произвидомой	напон завани	anaccér i	произвидомой	TO 160 16
использован	практической	использовани	способы	практической	Temam
ием	оптимизации	ем	практической	оптимизации с	№1, №2,
инструмента	c	инструментар	оптимизации с	использование	№3, №4
рия	использовани	РИЯ	использование	M	D
вычислитель	ем	вычислительн	M	инструментари	Экзамен
ных сред,	инструментар	ых сред,	инструментар	Я	ПО
способы и	ИЯ	способы и	ИЯ	вычислительн	темам
операторы	вычислительн	операторы	вычислительн	ых сред,	№5, №6
(функции)	ых сред,	(функции)	ых сред,	способы и	
для решения	способы и	для решения	способы и	операторы	
задач	операторы	задач	операторы	(функции) для	
управления	(функции)	управления	(функции) для	решения задач	
динамически	для решения	динамически	решения задач	управления	
МИ	задач	МИ	управления	динамическим	
системами.	управления	системами.	динамическим	и системами.	
	динамически		и системами.		
	МИ				
**	системами.	D	D.	G1	**
Уметь:	Отсутствие	В целом	В целом	Сформированн	Устный
использовать	умений или	удовлетворит	удовлетворите	ые умения	опрос
полученную	фрагментарн	ельные, но не	льные, но	использовать	ПО
в результате	ые умения	систематизир	содержащие	полученную в	темам
обучения	использовать	ованные	отдельные	результате	№1, №2,
теоретическу	полученную в	умения	пробелы	обучения	№3, №4,
ЮИ	результате	использовать	умения	теоретическую	№ 5,
практическу	обучения	полученную в	использовать	И	№ 6;
ю базу для	теоретическу	результате	полученную в	практическую	защита
получения	ЮИ	обучения	результате	базу для	лаборат
математичес	практическую	теоретическу	обучения	получения	орных
кого	базу для	ЮИ	теоретическую	математическо	работ по
описания	получения	практическую	И	го описания	темам
объектов и	математическ	базу для	практическую	объектов и	№2.3-
систем в	ого описания	получения	базу для	систем в виде	2.5;
виде	объектов и	математическ	получения	дифференциал	курсова
дифференци	систем в виде	ого описания	математическо	ьных	я работа
альных	дифференциа	объектов и	го описания	уравнений,	зачет по
уравнений,	льных	систем в виде	объектов и	структурных	темам
структурных	уравнений,	дифференциа	систем в виде	схем;	№1, №2,
схем;	структурных	льных	дифференциал	построения их	№3, №4
построения	схем;	уравнений,	ьных	характеристик	экзамен
ИХ	построения	структурных	уравнений,	И	ПО
характеристи	их	схем;	структурных	моделировани	темам
ки	характеристи	построения	схем;	Я	№5, №6
моделирован	ки	их	построения их		
ия	моделирован	характеристи	характеристик		
	ия	ки	И		
		моделирован	моделирования		
		ИЯ			
Владеть:	Отсутствие	В целом	В целом	Сформированн	Устный
способами	владения или	удовлетворит	удовлетворите	ые владения	опрос
моделирован	фрагментарн	ельные, но не	льные, но	способами	ПО
RИ	ые владения	систематизир	содержащие	моделировани	темам

	ı	T	ı	ı	1
технологиче	построением	ованные	отдельные	Я	№1, №2,
ских	математическ	владения	пробелы	технологическ	№3, №4,
процессов в	их моделей	построением	владения	их процессов в	№ 5,
судостроени	объектов и	математическ	построением	судостроении	№ 6;
ии	систем	их моделей	математическ	И	защита
судоремонте;	управления;	объектов и	их моделей	судоремонте;	лаборат
иметь	составлением	систем	объектов и	иметь	орных
представлен	исходных	управления;	систем	представление	работ по
ие об	дифференциа	составлением	управления;	об	темам
информацио	льных	исходных	составлением	информационн	№2.3-
нных	уравнений	дифференциа	исходных	ых	2.5;
технологиях	систем;	льных	дифференциал	технологиях и	курсова
и их	составлением	уравнений	ьных	их	я работа
использован	передаточных	систем;	уравнений	использовании	зачет по
ии для	функций	составлением	систем;	для экономии	темам
экономии	систем	передаточных	составлением	энергии и	№1, №2,
энергии и	управления;	функций	передаточных	ресурсосбереж	№3, №4
ресурсосбере	определением	систем	функций	ения на	экзамен
жения на	устойчивости	управления;	систем	предприятиях	по
предприятия	систем	определением	управления;	водного	темам
х водного	управления.	устойчивости	определением	транспорта.	№5, №6
транспорта.		систем	устойчивости		
		управления	систем		
			управления		

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ

1. Перечень вопросов для устного опроса

Тема № 1. Введение.

1.1. Основные понятия и определения

- 1. Что называется автоматическим управлением?
- 2. Что называется системой автоматического управления?
- 3. Что является основной задачей автоматического управления?
- 4. Что называется объектом управления?
- 5. Что называется управляемой величиной?
- 6. Что называется управляющим органом?
- 7. Что называется чувствительным элементом?
- 8. Что такое входная и выходная величины?
- 9. Что называется управляющим воздействием?
- 10. Что называется возмущением?
- 11. Что называется отклонением от заданной величины?
- 12. Что называется управляющим устройством?
- 13. Что называется задающим устройством?
- 14. Что называется функциональной схемой и из чего она состоит?

15. В чем отличие сигнала от физической величины?

1.2. Принципы управления в автоматических системах

- 1. В чем суть принципа разомкнутого управления?
- 2. В чем суть принципа компенсации?
- 3. В чем суть принципа обратной связи?
- 4. Перечислите достоинства и недостатки принципов управления?
- 5. Какой частный случай управления называется регулированием?
- 6. В чем отличие систем прямого и непрямого регулирования?

1.3. Классификация систем автоматического управления.

- 1. Классификация систем управления (СУ) по характеру изменения задающего воздействия.
- 2. Классификация СУ по способу передачи и преобразования сигналов.
- 3. Классификация СУ по способу математического описания.
- 4. Классификация СУ по числу управляемых величин.
- 5. Классификация дискретных СУ.

Тема № 2. Линейные непрерывные модели и характеристики систем автоматического управления

2.1. Математические модели описания динамики объектов управления

- 1. Математические модели типа «вход-выход», понятие звена системы.
- 2. Идеальные и реальные звенья.
- 3. Математическая модель электродвигателя постоянного тока.
- 4. Математическая модель электрической цепи с конденсатором.
- 5. Математическая модель электрической цепи с индуктивностью.
- 6. Математическая модель электрической цепи с последовательным соединением элементов R, L, C.

2.2. Линеаризация уравнений динамики

- 1. Что называется линеаризацией?
- 2. Способы линеаризации алгебраических нелинейных уравнений.
- 3. В чем геометрический смысл линеаризации?
- 4. В чем состоит математическое обоснование линеаризации?
- 5. Почему уравнение динамики САУ называется уравнением в отклонениях?
- 6. Методика линеаризация уравнений динамики.
- 7. Уравнение динамики в приращениях.
- 7. Понятие динамического звена системы.

2.3. Дифференциальные уравнения и передаточные функции динамических систем

- 1. Идеальные и реальные звенья.
- 2. Переходные процессы в САУ при линейном входном воздействии.
- 3. Переходные процессы в САУ при линейном входном воздействии.
- 4. Определение порядка астатизма звена при постоянном и линейном входном воздействиях.
- 5. Общий вид дифференциального уравнения линейного звена.
- 6. Линеаризация дифференциальных уравнений динамики.
- 7. Переход от описания звена во временной области к описанию в области изображений по Лапласу.
- 8. Определение и смысл передаточной функции.
- 9. Элементарные динамические звенья и их передаточные функции.

2.4. Временные характеристики динамических систем и элементарных звеньев

- 1. Понятие временной характеристики звена.
- 2. Типовые воздействия (единичное ступенчатое, единичное импульсное).
- 3. Переходная и весовая (импульсная переходная) функции.
- 4. Связь между переходной и весовой функциями.
- 5. Связь переходной функции и весовой функции с передаточной функцией.
- 6. Временные характеристики интегрирующего звена.
- 7. Временные характеристики астатического звена 1-го порядка.
- 8. Временные характеристики астатического звена 2-го порядка.
- 9. Временные характеристики колебательного звена.

2.5. Частотные характеристики динамических систем и элементарных звеньев

- 1. Особенности реакции линейного звена на гармоническое воздействие.
- 2. Понятие амплитудной и фазовой частотных характеристик (АЧХ и ФЧХ).
- 3. Частотная передаточная функция.
- 4. Связь АФЧХ с АЧХ и ФЧХ.
- 5. Логарифмическая АЧХ (ЛАЧХ).
- 6. Смысл логарифмической единицы «децибел».
- 7. Асимптотические ЛАЧХ; правила их построения.
- 8. Частотные характеристики интегрирующего звена.
- 9. Частотные характеристики дифференцирующего звена.
- 10. Частотные характеристики астатического звена 1-го порядка.
- 11. Частотные характеристики астатического звена 2-го порядка.
- 12. Частотные характеристики колебательного звена.

2.6. Описание динамических систем в пространстве состояний

Матричные модели динамических систем в пространстве состояний

- 1. Формы представления параметрических моделей линейных динамических систем.
- 2. Понятие о пространстве состояний, модели типа «вход-состояние-выход».
- 3. Векторы состояния, управления, возмущений и наблюдаемых величин.
- 4. Уравнение состояния и уравнение наблюдения, их матричная и скалярная форма записи.
- 5. Структурная схема модели системы в пространстве состояний.
- 6. Преобразования форм представления моделей СУ.
- 7. Нормальная форма уравнений состояния.
- 8. Каноническая форма уравнений состояния.
- 9. Стандартная наблюдаемая модель.

Тема № 3. Анализ линейных непрерывных систем автоматического управления

3.1. Устойчивость линейных систем. Основные понятия и определения

- 1. Понятие устойчивости и его приложение к системам автоматического управления.
- 2. Необходимое и достаточное условие устойчивости систем по Ляпунову.
- 3. Понятие асимптотической устойчивости.
- 4. Свободная и вынужденная составляющие уравнения динамики.
- 5. Затухание свободной составляющей в устойчивой системе.
- 6. Характеристическое уравнение системы.
- 7. Влияние вида корней характеристического уравнения системы на характер свободной составляющей.
- 8. Условия устойчивости линейной системы по виду корней ее характеристического уравнения.
- 9. Случай нахождения системы на границе устойчивости.
- 10. Расположение корней характеристического уравнения на комплексной плоскости.

3.2. Алгебраический критерий устойчивости динамической системы.

- 1. Правило составления главного определителя Гурвица и определителей Гурвица низших порядков.
- 2. Критерий устойчивости Гурвица.
- 3. Необходимые и достаточные условия устойчивости по Гурвицу систем первого порядка.
- 4. Необходимые и достаточные условия устойчивости по Гурвицу систем второго порядка.
- 5. Необходимые и достаточные условия устойчивости по Гурвицу систем третьего и выше порядков.

6. Достоинства и недостатки алгебраического критерия Гурвица.

3.3. Частотные критерии устойчивости динамической системы

- 1. Постановка задачи (определение устойчивости замкнутой системы по АФЧХ разомкнутой системы).
- 2. Общая формулировка критерия Найквиста; правило переходов для устойчивой разомкнутой системы.
- 3. Общая формулировка критерия Найквиста; правило переходов для неустойчивой разомкнутой системы.
- 4. Изобразить годографы устойчивой и неустойчивой замкнутых систем на комплексной плоскости.
- 5. Изобразить годограф системы, находящейся на границе устойчивости.
- 6. Дать определения понятиям критической точки и частоты среза на комплексной плоскости.
- 7. Правило определения устойчивости замкнутой системы по ЛАЧХ и ЛФЧХ разомкнутой системы.
- 8. Запасы устойчивости системы по амплитуде и по фазе.

3.4. Оценка точности регулирования в установившихся режимах.

- 1. Понятие о структурной и параметрической неустойчивости системы.
- 2. Понятия установившегося режима СУ и установившейся ошибки.
- 3. Передаточная функция СУ относительно ошибки.
- 4. Общая формула вычисления установившейся ошибки.
- 5. Понятие порядка астатизма СУ; способы определения порядка астатизма.
- 6. Определение установившейся ошибки при одновременном действии задающего и возмущающего воздействий.

3.5. Прямая и косвенная оценки качества переходных процессов.

- 1. Типовой вид переходных функций СУ.
- 2. Временные показатели качества переходного процесса СУ.
- 3. Частотные показатели качества переходного процесса СУ.
- 4. Корневые оценки качества.

3.6. Оценка чувствительности систем. Инвариантность систем.

- 1. Определение робастности системы.
- 2. Сущность основных понятий: робастная устойчивость, робастное качество, гарантирующее управление.
- 3. Понятие параметрической неопределенности. Условие робастной устойчивости для регулятора-усилителя.
- 4. Понятие и основные виды непараметрической неопределенности.

3.7. Анализ линейных стохастических систем при стационарных случайных воздействиях

- 1. Оценка корреляционной функции по реализации случайного процесса.
- 2. Оценка спектральной плотности случайного процесса по его корреляционной функции.
- 3. Оценка спектральной плотности по дискретным выборкам методом Блэкмана-Тьюки.
- 4. Оценка спектральной плотности с использованием «окон Хэмминга».
- 5. Оценка спектральной плотности мощности с использованием дискретного преобразования Фурье.
- 6. Использование алгоритма быстрого преобразования Фурье в инструментарии среды MatLab.

3.8. Основы анализа систем в пространстве состояний

- 1. Определение фундаментальной матрицы. Методы поиска фундаментальной матрицы.
- 2. Метод Кели-Гамильтона. Сущность, практическое применение.
- 3. Метод обратного преобразования Лапласа. Практическое применение.
- 4. Матричное характеристическое уравнение и условие устойчивости.
- 5. Понятие управляемости системы. Математическое условие управляемости.
- 6. Основная теорема модального управления. Формула Аккермана.
- 7. Понятие и определение наблюдаемой системы.
- 8. Матрица наблюдаемости. Математическое условие наблюдаемости.
- 9. Структура системы управления с наблюдателем.
- 10. Использование программного комплекса MatLab для формирования модели САУ в пространстве состояний.

Тема № 4. Задачи и методы синтеза линейных непрерывных систем автоматического управления

4.1. Коррекция динамических свойств системы управления с помощью ПИД-регуляторов

- 1. Задачи, решаемые с помощью корректирующих устройств.
- 2. Повышение быстродействия в разомкнутой системе с помощью форсирующего звена.
- 3. Свойства статической замкнутой системы с П-регулятором.
- 4. Компенсация статической ошибки путем усиления задающего сигнала.
- 5. Повышение порядка астатизма замкнутой системы
- 6. Свойства астатической системы с И-регулятором.
- 7. Свойства замкнутой системы с ПИ-регулятором.
- 8. Свойства замкнутой системы с ПИД-регулятором.

- 9. Подавление колебательных свойств объекта управления с помощью корректирующего устройства.
- 10. Компенсация запаздывания в объекте управления.

4.1. Синтез последовательного корректирующего устройства с помошью ЛАФЧХ

- 1. Постановка задачи синтеза.
- 2. Построение желаемой ЛАЧХ разомкнутой системы в соответствии с заданными показателями качества.
- 3. Определение ЛАЧХ корректирующего устройства.
- 4. Переход от ЛАЧХ корректирующего устройства к его передаточной функции.

Тема № 5. Дискретные системы автоматического управления

5.1. Общая характеристика дискретных систем.

- 1. Общая характеристика и классификация дискретных систем.
- 2. Виды квантования сигналов. Теорема В.А. Котельникова.
- 3. Способы импульсной модуляции.
- 4. Амплитудно-импульсная модуляция (АИМ). Пример импульсных систем с использованием АИМ
- 5. Широтно-импульсная модуляция (ШИМ). Пример импульсных систем с использованием ШИМ.
- 6. Понятие о релейных системах. Пример замкнутой системы с релейным регулятором.
- 7. Обобщенная функциональная схема цифровой системы.
- 8. Понятие цифрового сигнала; дискретность цифровых сигналов по уровню и по времени.
- 9. Принцип работы управляющей ЭВМ в цифровой системе.
- 10. Преимущества цифровых систем по сравнению с аналоговыми системами.

5.2. Математическое описание дискретных систем.

- 1. Решетчатые функции и разностные уравнения.
- 2. Дискретное преобразование Лапласа.
- 3. Z-преобразование и его свойства. Таблица z-преобразования.
- 4. Связь между преобразованием Лапласа непрерывных функций и z-преобразованием дискретных функций.
- 5. Способ приближенного дискретного интегрирования методом прямоугольников (с запаздыванием, с опережением).
- 6. ,Способ приближенного дискретного интегрирования методом трапеций.

5.3. Моделирование дискретных и цифровых систем.

- 1. Идеальный импульсный элемент и его математическая модель.
- 2. Математические модели элементов импульсных САУ.
- 3. Особенности математических моделей цифровых систем.
- 4. Передаточные функции дискретной и цифровой САУ.
- 5. Переход от ДПФ звена (системы) к его уравнению во временной области.
- 6. Аппроксимация непрерывной передаточной функции дискретной передаточной функцией.
- 7. Восстановление непрерывной передаточной функции по известной дискретной передаточной функции.
- 8. Линейные дискретные модели СУ.

5.4. Переходные процессы в импульсных системах.

- 1. Уравнения динамики импульсных систем.
- 2. Точность импульсной системы в установившемся режиме.
- 3. Показатели качества переходных процессов дискретных СУ.
- 4. Определение реакции разомкнутой и замкнутой импульсных систем на единичное воздействие.
- 5. Составление алгоритма функционирования цифрового регулятора по известной передаточной функции аналогового регулятора.

5.5. Анализ устойчивости дискретных систем.

- 1. Необходимое и достаточное условия устойчивости импульсных систем.
- 2. Отображение области устойчивости на комплексной плоскости.
- 3. Пример оценки устойчивости импульсной системы.
- 4. Частотный критерий Найквиста и его графическая интерпретация.
- 5. Частотный критерий Михайлова и его графическая интерпретация.

Тема № 6. Нелинейные системы автоматического управления

6.1. Общие сведения о нелинейных системах

- 1. Основные понятия и особенности нелинейных систем.
- 2. Статические и динамические нелинейности.
- 3. Методы линеаризации нелинейных моделей.
- 4. Структурные преобразования нелинейных систем.
- 5. Классификация и примеры нелинейных систем.

6.2. Анализ устойчивости нелинейных систем на основе метода

фазового пространства

- 1. Метод фазового пространства.
- 2. Типовые фазовые портреты нелинейных систем и их особые точки.
- 3. Анализ поведения СУ на фазовой плоскости.
- 4. Свойства фазовых траекторий.

6.3. Анализ нелинейных систем на основе методов А.М. Ляпунова и В.М. Попова

- 1. Первый метод анализа устойчивости нелинейных систем по А.М. Ляпунову.
- 2. Второй метод анализа устойчивости нелинейных систем А.М. по Ляпунову.
- 3. Частотный анализ устойчивости нелинейных систем методом В.М. Попова.
- 4. Понятие абсолютной устойчивости нелинейных систем.
- 5. Графическое представление критерия абсолютной устойчивости.

6.4. Метод гармонической линеаризации нелинейной системы

- 1. Сущность метода гармонической линеаризации.
- 2. Структурная схема гармонически линеаризованной нелинейной системы.
- 3. Применение метода для оценки устойчивости и наличия автоколебаний в системе.
- 4. Определение амплитуды и частоты автоколебаний аналитическим методом.
- 5. Определение амплитуды и частоты автоколебаний графоаналитическим методом.

Критерии оценивания:

- полнота и правильность ответа;
- степень осознанности, понимания изученного;
- языковое оформление ответа.

Показатели и шкала оценивания:

Шкала оценивания	Показатели
отлично	 обучающийся полно излагает материал, дает правильное определение основных понятий; обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, но и самостоятельно составленные; излагает материал последовательно и правильно с точки зрения

хорошо	-обучающийся дает ответ, удовлетворяющий тем же требованиям, что и для отметки «5», но допускает 1-2 ошибки, которые сам же исправляет, и 1-2 недочета в последовательности и языковом оформлении излагаемого;
удовлетворительно	обучающийся обнаруживает знание и понимание основных положений данной темы, но: -излагает материал неполно и допускает неточности в определении понятий или формулировке правил; -не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; -излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого материала;
не удовлетворительно	обучающийся обнаруживает незнание большей части соответствующего вопроса, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал.

1. Вид текущего контроля – защита лабораторных работ по темам:

Тема 2.3; 2.4. Дифференциальные уравнения и передаточные функции динамических систем. Временные характеристики динамических систем и элементарных звеньев

Тема 2.5. Частотные характеристики динамических систем и элементарных звеньев

Лабораторные работы представлены в методических указаниях к лабораторным работам дисциплине «Теория автоматического ПО управления» для направления подготовки 13.03.02. «Электроэнергетика и электротехника»: Теория Методические автоматического управления. указания лабораторным работам ДЛЯ студентов технических специальностей очной формы обучения / Лаптев Н.А.: Котласский филиал ФГОУ ВПО «СПГУВК», 2010 – 151 с.

Критерии оценивания выполнения лабораторных работ:

- работа выполнена без ошибок;
- полнота и правильность ответа;
- степень осознанности, понимания изученного;
- языковое оформление ответа

Показатели и шкала оценивания:

Шкала оценивания	Показатели
зачтено	свободное владение материалом;обучающийся дает правильное определение основных понятий
не зачтено	 обучающийся обнаруживает незнание большей части изучаемого материала и допускает большое количество существенных ошибок в формулировках определений; беспорядочно и неуверенно излагает материал

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

1. Вид промежуточной аттестации – устный зачет

Перечень вопросов к зачету

- 1. Системы автоматического управления (САУ). Основные определения, решаемые задачи, структура и назначение основных элементов.
- 2. Принципы управления. Сущность, примеры и схемы, достоинства и недостатки.
- 3. Классификация систем автоматического управления. Основные признаки, определения и характеристики каждого класса САУ.
- 4. Основные режимы САУ и разновидности типовых переходных процессов.
- 5. Уравнение динамики САУ в общем виде. Основные переменные и краткая их характеристика.
- 6. Первый способ линеаризации. Сущность, геометрическая интерпретация.
- 7. Второй способ линеаризации. Сущность, аналитическая интерпретация.
- 8. Передаточная функция звена. Формы записи, физический смысл, порядок, основные ее характеристики.
- 9. Передаточная функция системы. Порядок, формы записи и разложения, свойства и реализуемость.
- 10. Временные характеристики. Типовые воздействия и временные функции, связанные с ними. Связь временных характеристик с передаточной функцией.
- 11. Передаточные функции типовых динамических звеньев и их временные характеристики.
- 12. Основные способы и правила преобразования структурных схем. Примеры.

- 13. Преобразование структурной схемы с использованием сигнального графа. Основные элементы графа и их физический смысл. Определение передаточной функции системы по ее графу. Пример.
- 14. Основные частотные характеристики динамических звеньев. Назначение, аналитические зависимости и графическое представление.
- 15. Понятие годографа. Физический смысл, назначение и геометрическая интерпретация.
- 16. Логарифмические частотные характеристики. Получение, построение и применение.
- 17. Логарифмические частотные характеристики усилительного звена.
- 18. Логарифмические частотные характеристики интегрирующего звена.
- 19. Логарифмические частотные характеристики инерционного звена первого порядка.
- 20. Логарифмические частотные характеристики инерционного звена второго порядка.
- 21. Формы представления параметрических моделей линейных динамических систем.
- 22. Представление математической модели линейной динамической системы в пространстве состояния. Форма представления, основные компоненты модели и ее структурная схема.
- 23. Основные понятия и определения устойчивости системы. Устойчивость по Ляпунову.
- 24. Свободная и вынужденная составляющие уравнения динамики. Определения и соотношения. Механическая аналогия. Графическая интерпретация.
- 25. Условия устойчивости линейной системы по виду корней характеристического уравнения. Графическая и аналитическая интерпретация.
- 26. Определение условий устойчивости системы по уравнениям ее состояния. Пример.
- 27. Критерий Гурвица. Определение и необходимые соотношения. Достоинства и недостатки.
- 28. Критерий Найквиста для АФЧХ. Определение, графическая интерпретация. Примеры. Достоинства и недостатки.
- 29. Критерий Найквиста для ЛАФЧХ. Определение, графическая интерпретация. Примеры. Достоинства и недостатки.
- 30. Определение запасов устойчивости по амплитуде и фазе с помощью $A\Phi YX$.
- 31. Определение запасов устойчивости по амплитуде и фазе с помощью ЛАЧХ и ЛФЧХ.

- 32. Метод корневого годографа (КГ). Сущность и основные свойства КГ системы с отрицательной обратной связью. Работа с КГ в среде MatLAB.
- 33. Определение фундаментальной матрицы. Методы поиска фундаментальной матрицы.
- 34. Матричное характеристическое уравнение и условие устойчивости.
- 35. Понятие управляемости системы. Математическое условие управляемости.
- 36. Основная теорема модального управления. Формула Аккермана.
- 37. Понятие и определение наблюдаемой системы.
- 38. Матрица наблюдаемости. Математическое условие наблюдаемости.
- 39. Структура системы управления с наблюдателем.
- 40. Использование программного комплекса MatLab для формирования модели САУ в пространстве состояний.
- 41. Свойства статической замкнутой системы с П-регулятором.
- 42. Свойства астатической системы с И-регулятором.
- 43. Свойства замкнутой системы с ПИ-регулятором.
- 44. Свойства замкнутой системы с ПИД-регулятором.
- 45. Постановка задачи синтеза корректирующего устройства с помощью ЛАФЧХ.
- 46. Построение желаемой ЛАЧХ разомкнутой системы.
- 47. Определение ЛАЧХ корректирующего устройства.
- 48. Переход от ЛАЧХ корректирующего устройства к его передаточной функции.

Критерии оценивания:

- работа выполнена без ошибок;
- полнота и правильность ответа;
- степень осознанности, понимания изученного;
- языковое оформление ответа

Показатели и шкала оценивания:

Шкала оценивания	Показатели
зачтено	– свободное владение материалом;
	– обучающийся дает правильное определение основных понятий
не зачтено	– обучающийся обнаруживает незнание большей части
	изучаемого материала и допускает большое количество
	существенных ошибок в формулировках определений;
	 – беспорядочно и неуверенно излагает материал

2. Вид промежуточной аттестации – устный экзамен

Перечень вопросов к экзамену

- 1. Классификация импульсных систем.
- 2. Цифровые системы автоматического управления. Общая характеристика и основные схемы построения.
- 3. Импульсные системы автоматические управления. Общая характеристика, классификация и особенности основных видов структурных схем.
- 4. Виды квантования непрерывных сигналов и особенности их реализации в дискретных системах.
- 5. Основные виды импульсной модуляции и их особенности.
- 6. Решетчатые функции и уравнения в конечных разностях. Физический смысл и аналитическое описание.
- 7. Прямое и обратное дискретное преобразования Лапласа.
- 8. Z-преобразование и его свойства.
- 9. Представление данных в импульсной системе. Математическая модель идеального импульсного элемента.
- 10. Частотные свойства дискретного преобразования.
- 11. Импульсная передаточная функция разомкнутой системы.
- 12. Дискретная передаточная функция разомкнутой цифровой системы.
- 13. Импульсная передаточная функция замкнутой системы.
- 14. Дискретная передаточная функция замкнутой цифровой системы.
- 15. Условия устойчивости дискретных систем. Пример оценки устойчивости типовой импульсной САУ.
- 16. Билинейное преобразование. Отображение устойчивости на *w*-плоскости.
- 17. Критерий Рауса-Гурвица для дискретных систем.
- 18. Критерий Найквиста для дискретных систем.
- 19. Критерий Михайлова для дискретных систем.
- 20.Основные понятия и особенности нелинейных систем. Структура системы с нелинейным элементом.
- 21. Характеристики типовых нелинейностей и их соединений.
- 22. Первый вариант структурного преобразования нелинейной системы.
- 23. Второй вариант структурного преобразования нелинейной системы.
- 24. Метод фазового пространства. Анализ устойчивости по типовым фазовым портретам нелинейных систем.
- 25. Применение первого метода А.М. Ляпунова к анализу устойчивости нелинейных систем.
- 26. Применение второго метода А.М. Ляпунова к анализу устойчивости нелинейных систем.
- 27. Анализ устойчивости нелинейных систем методом В.М. Попова.
- 28. Метод гармонической линеаризации.

Критерии оценивания:

- полнота и правильность ответа;
- степень осознанности, понимания изученного;
- языковое оформление ответа

Показатели и шкала оценивания:

Шкала оценивания	Показатели
отлично	 обучающийся полно излагает материал, дает правильное определение основных понятий; обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только из учебника, но и самостоятельно составленные; излагает материал последовательно и правильно с точки зрения норм литературного языка
хорошо	— обучающийся дает ответ, удовлетворяющий тем же требованиям, что и для оценки «отлично», но допускает 1-2 ошибки, которые сам же исправляет, и 1-2 недочета в последовательности и языковом оформлении излагаемого
удовлетворительно	 обучающийся обнаруживает знание и понимание основных положений данной темы, но: излагает материал неполно и допускает неточности в определении понятий или формулировке правил; не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры; излагает материал непоследовательно и допускает ошибки в языковом оформлении излагаемого
неудовлетворительно	– обучающийся обнаруживает незнание большей части соответствующего вопроса, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал

3. Вид промежуточной аттестации – курсовая работа

Наименование курсовой работы «Исследование и коррекция линейной системы автоматического управления (САУ)»

Исходные данные к курсовой работе варианты №1 – №20

Варианты задания на курсовую работу представлены в методических указаниях по выполнению курсовой работы по дисциплине «Теория автоматического управления» для студентов направления подготовки 13.03.02 «Электроэнергетика и электротехника» (http://www.edu.kfgumrf.ru)

Критерии оценивания:

- полнота и правильность ответа;
- степень осознанности, понимания изученного;
- языковое оформление ответ

Показатели и шкала оценивания выполнения курсовой работы

Шкала оценивания	Показатели
отлично	 работа выполнена без ошибок, обучающийся отчетливо понимает ход расчетов; аккуратно и без ошибок выполняет чертежи, четко и грамотно оформляет пояснительную записку без отступлений от требований к ее оформлению; подробно и безошибочно отвечает на все заданные ему вопросы, проявляет при работе достаточную
хорошо	 работа выполнена с незначительными ошибками, но при опросе обучающийся проявляет понимание ошибок и способов их исправления; не допускает существенных погрешностей в ответах на вопросы, аккуратно выполняет чертежи и пояснительную
удовлетворительно	 работа выполнена без грубых ошибок, но при опросе обучающийся проявляет недостаточное понимание всех подробностей проделанной работы и допускает при ответах на вопросы неточности и неправильные формулировки; обучающийся допускает небрежность в графической работе и в оформлении пояснительной записки
неудовлетворительно	 принципиальные ошибки в представленной к защите работе; небрежно оформленная пояснительная записка; обучающийся при ответах обнаруживает незнание большей части материала, допускает ошибки в формулировке определений и понятий, беспорядочно и неуверенно излагает